Who Are We Guided Independent Study Course Information Student Center Design Center News job Site

All the boats pictured on this site were designed by Westlawn alumni.
Click here to see a gallery of alumni designs.

Westlawn alumni are prominent in the marine industry. Click here to see more.

Click here for information on Westlawn's short continuing education courses.

Click here to sign up for Westlawn’s free email journal, The Masthead, with: technical information, what’s happening at Westlawn, and boating industry updates.

Click here to order books, apparel and accessories.




Course # Module 4
Marine Systems Engineering

Course # Module 4 Objectives
After successfully completing this course students will:

  1. Describe the basic operation of gasoline and diesel engines, interpret the data contained in marine engine performance curves, analyze a boat's propulsion requirements, select and specify the main propulsion machinery as well as related sub-systems, design the installation of propulsion machinery and related sub-systems.
  2. Comprehend and describe how a marine propeller works, identify the various parts of a propeller, and describe their function, analyze a boat's propulsion requirements, estimate horsepower requirements and boat speed, select the correct propeller for a particular boat, determine correct size of propeller shafting.
  3. Understand electrical system requirements for sailboats and powerboats including, fundamentals, bonding and grounding, battery powered systems, generators, shore power wiring and circuit protection, galvanic corrosion, and be able to design electrical systems for yachts containing both AC and DC components.
  4. Specify and be able to incorporate the following marine systems and equipment into a design: steering, refrigeration, water systems, bilge pumps, sanitation systems, fuel systems, cooking stoves, environmental control, navigation lights, deck equipment, and firefighting equipment.
  5. Be able to discuss the function of specifications and the relationship between specifications and plans, and be able to write a clear, concise and complete set of specifications.
  6. Describe the aspects of setting up a private yacht or boat design practice and the duties and responsibilities of a staff designer employed by a production boat building company.
  7. Successfully pass the final design thesis by proposing, and preparing complete working plans, calculations, and specifications for two boats—a sailboat and a powerboat. The theses will demonstrate that the student has acquired the full range of knowledge and skills required to design complete boat designs, including all analysis and conceptual design, all detail working drawings and calculations and specifications.

Course # Module 4 Goals
As overarching goals of this course students will:

  • Select and specify the main propulsion machinery as well as related sub-systems, design the installation of propulsion machinery and related sub-systems.
  • Properly size a propeller and shaft and design its installation.
  • Learn what the requirements of a good marine electrical system are, and how to design such a system.
  • Specify systems and equipment required for navigation, sanitation, safety, and comfort.
  • Be able to write a set specifications describing all the details of a vessels design
  • Be able develop a design thesis (practicum) that is judged acceptable by the faculty in demonstrating a mastery of all the subject matter contained in all four courses/modules.

This is the final course in a four-course sequence. Passing this course indicates that the graduate is prepared perform the duties of a professional yacht and boat designer starting at the entry level with production boatbuilding companies, or independent yacht design firms engaged in private practice.

Course # Module 4 Syllabus
LESSON 32: Propulsion Systems Part 1 – Marine Engines

  1. The Gasoline Engine
    a. 2-Stroke and 4-Stroke Cycles
    b. Timing
    c. Ignition
    d. Throttle
    e. Cooling System
    f. Lubrication
    g. Electric System
  2. Diesel Engines
    a. 2-Stroke and 4-Stroke Cycles
    b. Comparing Gasoline to Diesel
    c. Lubrication
    d. Cooling System
  3. Power Curves
  4. Sterndrives and Outboards
  5. Instruments
  6. Installation Problems
  7. Fuel System Regulations

LESSON 33: Propulsion Systems Part 2 – Propellers and Rudders

  1. The Propeller in Theory
  2. Calculations for Speed Determination
  3. Propeller Determination (Calculation and Specification)
  4. Propeller Shafting
  5. Rudder in Theory
  6. Types of Rudders
  7. Rudder Stock Size Calculation and Specification

LESSON 34: Marine Electrical Systems

  1. Definition of Terms
  2. Graphic Symbols
  3. Basic Circuits and Calculations
  4. Bonding, Grounding and Lightning Protection
  5. Battery Powered Systems – Engine-Propelled Boats
  6. Calculation DC Loads
  7. Shore Power Systems (AC)
  8. Electrical Wiring and Circuit Protection
  9. Galvanic Corrosion
  10. Sailboat Electric Systems
  11. Electric System Regulations

LESSON 35: Systems and Equipment

  1. Steering Systems
  2. Marine Refrigeration
  3. Water Systems
  4. Bilge Pumping and Cockpit Drainage
  5. Sanitation Systems
  6. Fuel Systems
  7. Marine Stoves
  8. Ventilation/Environmental Control
  9. Air/Conditioning
  10. Navigation Lights
  11. Deck Equipment
  12. Firefighting Systems

LESSON 36: Specifications

  1. Example Specifications and Related Drawings
  2. Guidance on Writing Specifications

LESSON 37: Professional Practice

  1. Getting Started
    a. Establishing Goals
    b. Finances
    c. Personal Responsibilities
    d. Insurance
    e. Establishing a Design Office.
  2. Marketing
    a. Introduction
    b. Advertising
    c. Former Employers
    d. Design Reviews
    e. News Letters
    f. Visiting Builders
    g. Memberships
  3. Contracts
    a. Protecting Preliminary Work
    b. Contracts
    c. Conceptual Design Contracts
    d. Royalty Contracts
    e. Vessel Inspection
    f. Designer Recognition
    g. Legal Council
    h. Payment
  4. Financial Management
    a. Bookkeeping and Accounting
    b. Taxes
  5. The Boating Industry Designer
    a. Organizational Structure
    b. Job Responsibilities
    c. Related Responsibilities
    d. Advantages and Disadvantages

LESSON 38: Four-Module Design Thesis
The student is to prepare two complete boat designs, one power and one sail, one in aluminum and the other in fiberglass. Detailed proposals for both designs are presented to the instructor for review and approval. Upon approval, the student completes both designs, including all structural, stability, speed and powering, weight and hydrostatic calculations, complete detailed working drawings, electric system specifications and overall specifications. In order to graduate, the student must demonstrate a strong grasp of all the aspects of design taught throughout all four modules at a professional or near professional level.